Главная страница » Співробітництво » Міжнародне співробітництво

Міжнародне співробітництво


Спільні публікації із закордонними університетами

Department of Materials Science and Engineering, UCLA (University of California Los Angeles)
University of Grenoble (до об’єднання – Institut Polytechnique de Grenoble ) FRANCE
Department of Materials Science and Engineering, Beijing Institute of Technology (China)
Department of Materials Science and Engineering, National Chiao Tung University (Taiwan)
School of Materials Engineering, Nanyang Technological University (Singapore)
Institute of Material Physics, University of Muenster, Germany
Physics of Condensed Matter, University of Mons-Hainaut (Belgium)
AGH University of Science and Technology (Cracow)
Jagiellonian University (Cracow)
Technical University of Eindhoven (The Netherlands)
Department of Solid State Physics. University of Debrecen (Hungary)
University of Macau
EMPA (Dubendorf, Zurich, Switzerland)
University of Rostock

Міжнародна співпраця

Міжнародний науковий семінар EXMONAN
Alumni Advisory Board
Науковий угорсько-німецький семестр фізиків

Departmentof Materials Science and Engineering, UCLA (University of California Los Angeles)

  • Gusak, A. M., & Tu, K. N. (2002). Kinetic theory of flux-driven ripening. Physical Review B, 66(11), 115403. https://doi.org/10.1103/PhysRevB.66.115403
  • Gusak, A. M., Zaporozhets, T. V., Tu, K. N., & Gösele, U. (2005). Kinetic analysis of the instability of hollow nanoparticles. Philosophical Magazine, 85(36), 4445-4464. https://doi.org/10.1080/14786430500311741
  • Gusak, A. M., & Tu, K. N. (2009). Interaction between the Kirkendall effect and the inverse Kirkendall effect in nanoscale particles. Acta Materialia, 57(11), 3367-3373. https://doi.org/10.1016/j.actamat.2009.03.043
  • Tu, K. N., Gusak, A. M., & Li, M. (2003). Physics and materials challenges for lead-free solders. Journal of applied Physics, 93(3), 1335-1353. ttps://doi.org/10.1063/1.1517165
  • Huang, A. T., Gusak, A. M., Tu, K. N., & Lai, Y. S. (2006). Thermomigration in SnPb composite flip chip solder joints. Applied Physics Letters, 88(14), 141911. https://doi.org/10.1063/1.2192694
  • Suh, J. O., Tu, K. N., Lutsenko, G. V., & Gusak, A. M. (2008). Size distribution and morphology of Cu6Sn5 scallops in wetting reaction between molten solder and copper. Acta Materialia, 56(5), 1075-1083. https://doi.org/10.1016/j.actamat.2007.11.009
  • Wu, A. T., Gusak, A. M., Tu, K. N., & Kao, C. R. (2005). Electromigration-induced grain rotation in anisotropic conducting beta tin. Applied physics letters, 86(24), 241902. https://doi.org/10.1063/1.1941456
  • Ouyang, F. Y., Tu, K. N., Lai, Y. S., & Gusak, A. M. (2006). Effect of entropy production on microstructure change in eutectic SnPb flip chip solder joints by thermomigration. Applied Physics Letters, 89(22), 221906. https://doi.org/10.1063/1.2385205
  • Tu, K. N., & Gusak, A. M. (2019). A unified model of mean-time-to-failure for electromigration, thermomigration, and stress-migration based on entropy production. Journal of Applied Physics, 126(7), 075109. https://doi.org/10.1063/1.5111159
  • Tu, K. N., & Gusak, A. M. (2014). Kinetics in nanoscale materials. John Wiley & Sons. Print ISBN:9780470881408 |Online ISBN:9781118743140 |DOI:10.1002/9781118743140
  • Tu, K. N., Gusak, A. M., & Sobchenko, I. (2003). Linear rate of grain growth in thin films during deposition. Physical Review B, 67(24), 245408. https://doi.org/10.1103/PhysRevB.67.245408
  • Tang, W., Picraux, S. T., Huang, J. Y., Gusak, A. M., Tu, K. N., & Dayeh, S. A. (2013). Nucleation and atomic layer reaction in nickel silicide for defect-engineered Si nanochannels. Nano letters, 13(6), 2748-2753. https://doi.org/10.1021/nl400949n
  • Zaporozhets, T. V., Gusak, A. M., Tu, K. N., & Mhaisalkar, S. G. (2005). Three-dimensional simulation of void migration at the interface between thin metallic film and dielectric under electromigration. Journal of applied physics, 98(10), 103508. https://doi.org/10.1063/1.2131204
  • Gusak, A. M., & Tu, K. N. (2003). Theory of normal grain growth in normalized size space. Acta Materialia, 51(13), 3895-3904. https://doi.org/10.1016/S1359-6454(03)00214-3
  • Tu, K. N., & Gusak, A. M. (2018). A comparison between complete and incomplete cellular precipitations. Scripta Materialia, 146, 133-135. https://doi.org/10.1016/j.scriptamat.2017.11.036
  • Gusak, A. M., Lutsenko, G. V., & Tu, K. N. (2006). Ostwald ripening with non-equilibrium vacancies. Acta materialia, 54(3), 785-791. https://doi.org/10.1016/j.actamat.2005.09.035
  • Kovalchuk, A. O., Gusak, A. M., & Tu, K. N. (2010). Theory of repeating nucleation in point contact reactions between nanowires. Nano letters, 10(12), 4799-4806. https://doi.org/10.1021/nl100969d
  • Tian, T., Gusak, A. M., Liashenko, O. Y., Han, J. K., Choi, D., & Tu, K. N. (2012, May). A new physical model for life time prediction of Pb-free solder joints in electromigration tests. In 2012 IEEE 62nd Electronic Components and Technology Conference (pp. 741-746). IEEE. DOI: 10.1109/ECTC.2012.6248915
  • Tu, K. N., & Gusak, A. N. (2020). Mean-Time-To-Failure Equations for Electromigration, Thermomigration, and Stress Migration. IEEE Transactions on Components, Packaging and Manufacturing Technology, 10(9), 1427-1431. DOI: 10.1109/TCPMT.2020.3003003
  • Turlo, V. V., Gusak, A. M., & Tu, K. N. (2013). Model of phase separation and of morphology evolution in two-phase alloy. Philosophical Magazine, 93(16), 2013-2025. https://doi.org/10.1080/14786435.2012.747011
  • Suh, J. O., Tu, K. N., & Gusak, A. M. (2005). Morphology change, size distribution, and nano-sized channels in Cu 6 Sn 5 intermetallic compound formation at the SnPb solder and copper interface. MRS Online Proceedings Library Archive, 863. https://doi.org/10.1557/PROC-863-B10.3
  • Gusak, A. M., Tu, K. N., & Zaporozhets, T. V. (2009). Diffusion-driven evolution of morphology in metallic joints and solder balls at electromigration, Thermomi-gration and Reflow. Metallofizika i Noveishie Tekhnologii, 31(1), 1-22. https://scholar.nctu.edu.tw/zh/publications/diffusion-driven-evolution-of-morphology-in-metallic-joints-and-s
  • Sobchenko, I. V., Gusak, A., & Tu, K. N. (2005). 3D Monte-Carlo model of deposition and grain growth in thin films. In Defect and Diffusion Forum (Vol. 237, pp. 1281-1286). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DDF.237-240.1281
  • Gusak, A., Storozhuk, N., & Tu, K. N. (2011). Models of interdiffusion in a polycrystalline alloy: Kirkendall effect versus non-equilibrium vacancies and backstress. In Defect and Diffusion Forum (Vol. 309, pp. 135-142). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DDF.309-310.135
  • Tang, W., Picraux, S. T., Gusak, A. M., Tu, K. N., & Dayeh, S. A. (2014). Dynamical imaging of nickel disilicide nucleation and step flow propagation in defect-engineered Si nanowire. ECS Transactions, 64(8), 101. https://iopscience.iop.org/article/10.1149/06408.0101ecst/meta
  • Gusak, A. M., Podolyan, O. M., & Tu, K. N. (2009). Segregation modelling in two-phase alloys under electric current. Metallofizika i Noveishie Tekhnologii, 31(4), 487-493. https://scholar.nctu.edu.tw/zh/publications/segregation-modelling-in-two-phase-alloys-under-electric-current


University of Grenoble (до об’єднання – Institut Polytechnique de Grenoble ) FRANCE

  • Hodaj, F., Gusak, A. M., & Desre, P. J. (1998). Effect of sharp concentration gradients on the nucleation of intermetallics in disordered solids: influence of the embryo shape. Philosophical Magazine A, 77(6), 1471-1479. https://doi.org/10.1080/01418619808214264
  • Gusak, A. M., Hodaj, F., & Bogatyrev, A. O. (2001). Kinetics of nucleation in the concentration gradient. Journal of physics: Condensed matter, 13(12), 2767. https://iopscience.iop.org/article/10.1088/0953-8984/13/12/302/meta
  • Hodaj, F., & Gusak, A. M. (2004). Suppression of intermediate phase nucleation in binary couples with metastable solubility. Acta materialia, 52(14), 4305-4315. https://doi.org/10.1016/j.actamat.2004.05.047
  • Gusak, A. M., & Hodaj, F. (2005). Nucleation in a Concentration Gradient. Nucleation Theory and Applications. edited by J. W. P. Schmelzer Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA ISBN: 3-527-40469-4, Chapter 10
  • Gusak, A., Hodaj, F., & Liashenko, O. (2015). Criteria of kinetic suppression of lateral growth of intermediate phases. Philosophical Magazine Letters, 95(2), 110-121. https://doi.org/10.1080/09500839.2015.1020350
  • Gusak, A. M., Hodaj, F., & Zaporozhets, T. V. (2011). Thermodynamics of void nucleation in nanoparticles. Philosophical magazine letters, 91(12), 741-750. https://doi.org/10.1080/09500839.2011.616180
  • Gusak, A. M., Lyashenko, O. Y., & Hodaj, F. (2019). The Competition of Intermediate Phases in the Diffusion Zone. Inorganic Materials: Applied Research, 10(3), 517-524. https://link.springer.com/article/10.1134/S2075113319030109
  • Hodaj, F., Gusak, A. M., Kovalchuk, A. O., & Desre, P. J. (1997). Nucleation modes in sharp concentration gradients. MRS Online Proceedings Library (OPL), 481. https://doi.org/10.1557/PROC-481-113
  • Shirinyan, A. S., Gusak, A., & Desre, P. J. (2000). Nucleation and growth in nanometric volumes. In Journal of Metastable and Nanocrystalline Materials (Vol. 7, pp. 17-40). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/JMNM.7.17
  • Gusak, A., & Desre, P. J. (2001). Interdiffusion-independent modes in multicomponent systems. In Defect and Diffusion Forum (Vol. 194, pp. 201-208). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DDF.194-199.201
  • Desre, P. J., & Gusak, A. (2001). Relaxation of thermal concentration fluctuations in ternary liquids. Philosophical magazine A, 81(10), 2503-2514. https://doi.org/10.1080/01418610108217160
  • Hodaj, F., Liashenko, O., & Gusak, A. M. (2014). Cu3Sn suppression criterion for solid copper/molten tin reaction. Philosophical magazine letters, 94(4), 217-224.


Department of Materials Science and Engineering, Beijing Institute of Technology (China)

Liu, Y., Pu, L., Gusak, A., Zhao, X., Tan, C., & Tu, K. N. (2020). Ultra-thin intermetallic compound formation in microbump technology by the control of a low Zn concentration in solder. Materialia, 12, 100791. https://doi.org/10.1016/j.mtla.2020.100791


Department of Materials Science and Engineering, National Chiao Tung University (Taiwan)


School of Materials Engineering, Nanyang Technological University (Singapore)

  • Vairagar, A. V., Mhaisalkar, S. G., Krishnamoorthy, A., Tu, K. N., Gusak, A. M., Meyer, M. A., & Zschech, E. (2004). In situ observation of electromigration-induced void migration in dual-damascene Cu interconnect structures. Applied physics letters, 85(13), 2502-2504. https://doi.org/10.1063/1.1795978
  • Vairagar, A. V., Mhaisalkar, S. G., Meyer, M. A., Zschech, E., Krishnamoorthy, A., Tu, K. N., & Gusak, A. M. (2005). Direct evidence of electromigration failure mechanism in dual-damascene Cu interconnect tree structures. Applied physics letters, 87(8), 081909, https://doi.org/10.1063/1.2033136
  • Shao, W., Mhaisalkar, S. G., Sritharan, T., Vairagar, A. V., Engelmann, H. J., Aubel, O., … & Tu, K. N. (2007). Direct evidence of Cu/cap/liner edge being the dominant electromigration path in dual damascene Cu interconnects. Applied physics letters, 90(5), 052106. https://doi.org/10.1063/1.2437689
  • Gan, Z. H., Shao, W., Mhaisalkar, S. G., Chen, Z., Li, H., Tu, K. N., & Gusak, A. M. (2006). Reservoir effect and the role of low current density regions on electromigration lifetimes in copper interconnects. Journal of materials research, 21(9), 2241-2245. https://link.springer.com/article/10.1557/jmr.2006.0270
  • Gan, Z., Gusak, A. M., Shao, W., Chen, Z., Mhaisalkar, S. G., Zaporozhets, T., & Tu, K. N. (2007). Analytical modeling of reservoir effect on electromigration in Cu interconnects. Journal of materials research, 22(1), 152-156. https://link.springer.com/article/10.1557/jmr.2007.0001
  • Gan, Z. H., Shao, W., Yan, M. Y., Vairagar, A. V., Zaporozhets, T., Meyer, M. A., … & Mhaisalkar, S. G. (2006, February). Understanding the Impact of Surface Engineering, Structure, and Design on Electromigration through Monte Carlo Simulation and In‐Situ SEM Studies. In AIP Conference Proceedings (Vol. 817, No. 1, pp. 34-42). American Institute of Physics. https://doi.org/10.1063/1.2173529
  • Vairagar, A. V., Mhaisalkar, S. G., Krishnamoorthy, A., Tu, K. N., Gusak, A. M., Zaporozhets, T., … & Zschech, E. (2004, December). Study of Electromigration Induced Void Nucleation, Growth, and Movement in Cu Interconnects. In AIP Conference Proceedings (Vol. 741, No. 1, pp. 135-147). American Institute of Physics. https://doi.org/10.1063/1.1845843
  • Rui, X., Tang, Y., Malyi, O. I., Gusak, A., Zhang, Y., Niu, Z., … & Yan, Q. (2016). Ambient dissolution–recrystallization towards large-scale preparation of V2O5 nanobelts for high-energy battery applications. Nano Energy, 22, 583-593. https://doi.org/10.1016/j.nanoen.2016.03.001


Institute of Material Physics, University of Muenster, Germany

  • Gusak, A. M., Hodaj, F., & Schmitz, G. (2011). Flux-driven nucleation at interfaces during reactive diffusion. Philosophical Magazine Letters, 91(9), 610-620. https://doi.org/10.1080/09500839.2011.600257
  • Pasichnyy, M. O., Schmitz, G., Gusak, A. M., & Vovk, V. (2005). Application of the critical gradient concept to the nucleation of the first-product phase in Co∕ Al thin films. Physical Review B, 72(1), 014118.. https://doi.org/10.1103/PhysRevB.72.014118
  • Gusak, A., Schmitz, G., & Storozhuk, N. (2012). Flux Driven Nucleation at Interfaces During Reactive Diffusion–New Solution of an old Problem. In Defect and Diffusion Forum (Vol. 323, pp. 55-60). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DDF.323-325.55
  • Eich, S. M., Kasprzak, M., Gusak, A., & Schmitz, G. (2012). On the mechanism of diffusion-induced recrystallization: Comparison between experiment and molecular dynamics simulations. Acta materialia, 60(8), 3469-3479. https://doi.org/10.1016/j.actamat.2012.03.009
  • Sobchenko, I. V., Schmitz, G., Gusak, A. M., & Baither, D. (2007). LATERAL GRAIN GROWTH DURING NANOFILM DEPOSITION. Вестник Черкасского национального университета. Серия: Физико-математические науки, (117), 51-57.


Physics of Condensed Matter, University of Mons-Hainaut (Belgium)


AGH University of Science and Technology (Cracow)

  • Danielewski, M., Wierzba, B., Gusak, A., Pawełkiewicz, M., & Janczak-Rusch, J. (2011). Chemical interdiffusion in binary systems; interface barriers and phase competition. Journal of Applied Physics, 110(12), 123705. https://doi.org/10.1063/1.3667293
  • Gusak, A., Danielewski, M., Korbel, A., Bochniak, M., & Storozhuk, N. (2014). Elementary model of severe plastic deformation by KoBo process. Journal of Applied Physics, 115(3), 034905. https://doi.org/10.1063/1.4861870
  • Danielewski, M., Gusak, A., Bożek, B., & Zajusz, M. (2016). Model of diffusive interaction between two-phase alloys with explicit fine-tuning of the morphology evolution. Acta Materialia, 108, 68-84. https://doi.org/10.1016/j.actamat.2016.02.018
  • Gusak, A., Wierzba, B., & Danielewski, M. (2014). Competition between Kirkendall shift and backstress in interdiffusion revisited–simple analytic model. Philosophical Magazine, 94(10), 1153-1165. https://doi.org/10.1080/14786435.2013.878053
  • Gusak, A., Wierzba, B., & Danielewski, M. (2015). Electromigration revisited: competition between Kirkendall shift and backstress in pure metals and two-phase alloys. Philosophical Magazine, 95(10), 1093-1104. https://doi.org/10.1080/14786435.2015.1020352
  • Gusak, A., Leszczynski, H., Danielewski, M., & Klochay, V. (2015). Zero stability of the two-phase systems and random walk in the composition space. Вісник Черкаського університету. Серія: Фізико-математичні науки, (16), 3-9.
  • Gusak, A., Leszczynski, H., Danielewski, M., & Klochay, V. (2015). Zero stability of the two-phase systems and random walk in the composition space. Вісник Черкаського університету. Серія: Фізико-математичні науки, (16), 3-9.


Jagiellonian University (Cracow)

  • V.M. Bezpalchuk, R. Kozubski, A.M. Gusak . Simulation of the tracer diffusion, bulk ordering, and surface reordering in f.c.c. structures by kinetic mean-field method // Успехи физики металлов. — 2017. — Т. 18, № 3. — С. 205-233. https://doi.org/10.15407/ufm.18.03.205
  • Bezpalchuk, V., Abdank-Kozubski, R., Pasichnyy, M., & Gusak, A. (2018). Tracer diffusion and ordering in FCC structures-stochastic kinetic Mean-Field Method vs. Kinetic Monte Carlo. In Defect and Diffusion Forum (Vol. 383, pp. 59-65). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DDF.383.59
  • Gusak, A., Abdank-Kozubski, R., & Tyshchenko, D. (2015). Grain growth in open systems. In Diffusion Foundations (Vol. 5, pp. 229-244). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DF.5.229
  • Bezpalchuk, V., Gusak, A., & Kozubski, R. (2016). Correlations between phase formation morphology and sequence with the temperature profile of exothermic solid-state reactions. Вісник Черкаського університету. Серія Фізико-математичні науки, (1), 3-11.


Technical University of Eindhoven (The Netherlands)

  • Van Dal, M. J. H., Gusak, A. M., Cserháti, C., Kodentsov, A. A., & Van Loo, F. J. J. (2001). Microstructural stability of the Kirkendall plane in solid-state diffusion. Physical review letters, 86(15), 3352. https://doi.org/10.1103/PhysRevLett.86.3352
  • Van Dal, M. J. H., Gusak, A. M., Cserháti, C., Kodentsov, A. A., & Van Loo, F. J. J. (2002). Spatio-temporal instabilities of the Kirkendall marker planes during interdiffusion in β’-AuZn. Philosophical magazine A, 82(5), 943-954. https://doi.org/10.1080/01418610208240011
  • Kodentsov, A. A., Paul, A., Van Dal, M. J. H., Cserháti, C., Gusak, A. M., & Van Loo, F. J. J. (2008). On the spatial stability and bifurcation of the Kirkendall plane during solid-state interdiffusion. Critical reviews in solid state and materials sciences, 33(3-4), 210-233. https://doi.org/10.1080/10408430802462958
  • Kodentsov, A. A., Van Dal, M. J. H., Cserháti, C., Gusak, A., & van Loo, F. J. J. (2001). Patterning in reactive diffusion. In Defect and Diffusion Forum (Vol. 194, pp. 1491-1502). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DDF.194-199.1491
  • Van Dal, M. J. H., Gusak, A., Cserháti, C., Kodentsov, A. A., & Van Loo, F. J. J. (2001). Instabilities of Kirkendall planes. In Defect and Diffusion Forum (Vol. 194, pp. 195-200). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DDF.194-199.195


Department of Solid State Physics. University of Debrecen (Hungary)

  • Erdélyi, Z., Pasichnyy, M., Bezpalchuk, V., Tomán, J. J., Gajdics, B., & Gusak, A. M. (2016). Stochastic kinetic mean field model. Computer Physics Communications, 204, 31-37. https://doi.org/10.1016/j.cpc.2016.03.003
  • Zaporozhets, T. V., Taranovskyy, A., Jáger, G., Gusak, A. M., Erdélyi, Z., & Tomán, J. J. (2020). The effect of introducing stochasticity to kinetic mean-field calculations: Comparison with lattice kinetic Monte Carlo in case of regular solid solutions. Computational Materials Science, 171, 109251. https://doi.org/10.10/j.commatsci.2019.109251
  • Morozovych, V. V., Honda, A. R., Lyashenko, Y. O., Korol, Y. D., Liashenko, O. Y., Cserhati, С., & Gusak, A. M. (2018). Influence of copper pretreatment on the phase and pore formations in the solid phase reactions of copper with tin. Металлофизика и новейшие технологии, 40(12), 1649-1673. http://eprints.cdu.edu.ua/id/eprint/3706


University of Macau

Gusak, A., Huriev, Y., Malyi, O. I., & Tang, Y. (2020). Elementary models of the “flux driven anti-ripening” during nanobelt growth. Physical Chemistry Chemical Physics, 22(17), 9740-9748. https://doi.org/10.1039/C9CP06337D


EMPA (Dubendorf, Zurich, Switzerland)

  • Gusak, A., Zaporozhets, T., & Janczak-Rusch, J. (2017). Kinetic pinning versus capillary pinning of voids at the moving interface during reactive diffusion. Philosophical Magazine Letters, 97(1), 1-10. https://doi.org/10.1080/09500839.2016.1262559
  • Pasichnyy, M., Janczak-Rusch, J., Jeurgens, L. P., Liashenko, O., & Gusak, A. (2015). Application of the Critical Gradient Concept to First Phase Formation in Cu/Sn Nano-Multilayered Systems. In Euromat (pp. 20-24). http://eprints.cdu.edu.ua/id/eprint/2158


University of Rostock

  • Gusak, A., Huriev, Y., & Schmelzer, J. W. (2020). Anisotropic Nucleation, Growth and Ripening under Stirring—A Phenomenological Model. Entropy, 22(11), 1254. https://doi.org/10.3390/e22111254
  • Gusak, A. M., Zaporozhets, T. V., Lyashenko, Y. O., Kornienko, S. V., Pasichnyy, M. O., & Shirinyan, A. S. (2010). Diffusion-controlled solid state reactions: in alloys, thin films and nanosystems. John Wiley & Sons. Ed. By J.W.P.Schmelzer