Міжнародна діяльність

Співробітництво із закордонними установами

Міжнародна співпраця

Міжнародний науковий семінар EXMONAN
Alumni Advisory Board
Науковий угорсько-німецький семестр фізиків
Departmentof Materials Science and Engineering, UCLA (University of California Los Angeles)
  • Gusak, A. M., & Tu, K. N. (2002). Kinetic theory of flux-driven ripening. Physical Review B, 66(11), 115403. https://doi.org/10.1103/PhysRevB.66.115403
  • Gusak, A. M., Zaporozhets, T. V., Tu, K. N., & Gösele, U. (2005). Kinetic analysis of the instability of hollow nanoparticles. Philosophical Magazine, 85(36), 4445-4464. https://doi.org/10.1080/14786430500311741
  • Gusak, A. M., & Tu, K. N. (2009). Interaction between the Kirkendall effect and the inverse Kirkendall effect in nanoscale particles. Acta Materialia, 57(11), 3367-3373. https://doi.org/10.1016/j.actamat.2009.03.043
  • Tu, K. N., Gusak, A. M., & Li, M. (2003). Physics and materials challenges for lead-free solders. Journal of applied Physics, 93(3), 1335-1353. ttps://doi.org/10.1063/1.1517165
  • Huang, A. T., Gusak, A. M., Tu, K. N., & Lai, Y. S. (2006). Thermomigration in SnPb composite flip chip solder joints. Applied Physics Letters, 88(14), 141911. https://doi.org/10.1063/1.2192694
  • Suh, J. O., Tu, K. N., Lutsenko, G. V., & Gusak, A. M. (2008). Size distribution and morphology of Cu6Sn5 scallops in wetting reaction between molten solder and copper. Acta Materialia, 56(5), 1075-1083. https://doi.org/10.1016/j.actamat.2007.11.009
  • Wu, A. T., Gusak, A. M., Tu, K. N., & Kao, C. R. (2005). Electromigration-induced grain rotation in anisotropic conducting beta tin. Applied physics letters, 86(24), 241902. https://doi.org/10.1063/1.1941456
  • Ouyang, F. Y., Tu, K. N., Lai, Y. S., & Gusak, A. M. (2006). Effect of entropy production on microstructure change in eutectic SnPb flip chip solder joints by thermomigration. Applied Physics Letters, 89(22), 221906. https://doi.org/10.1063/1.2385205
  • Tu, K. N., & Gusak, A. M. (2019). A unified model of mean-time-to-failure for electromigration, thermomigration, and stress-migration based on entropy production. Journal of Applied Physics, 126(7), 075109. https://doi.org/10.1063/1.5111159
  • Tu, K. N., & Gusak, A. M. (2014). Kinetics in nanoscale materials. John Wiley & Sons. Print ISBN:9780470881408 |Online ISBN:9781118743140 |DOI:10.1002/9781118743140
  • Tu, K. N., Gusak, A. M., & Sobchenko, I. (2003). Linear rate of grain growth in thin films during deposition. Physical Review B, 67(24), 245408. https://doi.org/10.1103/PhysRevB.67.245408
  • Tang, W., Picraux, S. T., Huang, J. Y., Gusak, A. M., Tu, K. N., & Dayeh, S. A. (2013). Nucleation and atomic layer reaction in nickel silicide for defect-engineered Si nanochannels. Nano letters, 13(6), 2748-2753. https://doi.org/10.1021/nl400949n
  • Zaporozhets, T. V., Gusak, A. M., Tu, K. N., & Mhaisalkar, S. G. (2005). Three-dimensional simulation of void migration at the interface between thin metallic film and dielectric under electromigration. Journal of applied physics, 98(10), 103508. https://doi.org/10.1063/1.2131204
  • Gusak, A. M., & Tu, K. N. (2003). Theory of normal grain growth in normalized size space. Acta Materialia, 51(13), 3895-3904. https://doi.org/10.1016/S1359-6454(03)00214-3
  • Tu, K. N., & Gusak, A. M. (2018). A comparison between complete and incomplete cellular precipitations. Scripta Materialia, 146, 133-135. https://doi.org/10.1016/j.scriptamat.2017.11.036
  • Gusak, A. M., Lutsenko, G. V., & Tu, K. N. (2006). Ostwald ripening with non-equilibrium vacancies. Acta materialia, 54(3), 785-791. https://doi.org/10.1016/j.actamat.2005.09.035
  • Kovalchuk, A. O., Gusak, A. M., & Tu, K. N. (2010). Theory of repeating nucleation in point contact reactions between nanowires. Nano letters, 10(12), 4799-4806. https://doi.org/10.1021/nl100969d
  • Tian, T., Gusak, A. M., Liashenko, O. Y., Han, J. K., Choi, D., & Tu, K. N. (2012, May). A new physical model for life time prediction of Pb-free solder joints in electromigration tests. In 2012 IEEE 62nd Electronic Components and Technology Conference (pp. 741-746). IEEE. DOI: 10.1109/ECTC.2012.6248915
  • Tu, K. N., & Gusak, A. N. (2020). Mean-Time-To-Failure Equations for Electromigration, Thermomigration, and Stress Migration. IEEE Transactions on Components, Packaging and Manufacturing Technology, 10(9), 1427-1431. DOI: 10.1109/TCPMT.2020.3003003
  • Turlo, V. V., Gusak, A. M., & Tu, K. N. (2013). Model of phase separation and of morphology evolution in two-phase alloy. Philosophical Magazine, 93(16), 2013-2025. https://doi.org/10.1080/14786435.2012.747011
  • Suh, J. O., Tu, K. N., & Gusak, A. M. (2005). Morphology change, size distribution, and nano-sized channels in Cu 6 Sn 5 intermetallic compound formation at the SnPb solder and copper interface. MRS Online Proceedings Library Archive, 863. https://doi.org/10.1557/PROC-863-B10.3
  • Gusak, A. M., Tu, K. N., & Zaporozhets, T. V. (2009). Diffusion-driven evolution of morphology in metallic joints and solder balls at electromigration, Thermomi-gration and Reflow. Metallofizika i Noveishie Tekhnologii, 31(1), 1-22. https://scholar.nctu.edu.tw/zh/publications/diffusion-driven-evolution-of-morphology-in-metallic-joints-and-s
  • Sobchenko, I. V., Gusak, A., & Tu, K. N. (2005). 3D Monte-Carlo model of deposition and grain growth in thin films. In Defect and Diffusion Forum (Vol. 237, pp. 1281-1286). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DDF.237-240.1281
  • Gusak, A., Storozhuk, N., & Tu, K. N. (2011). Models of interdiffusion in a polycrystalline alloy: Kirkendall effect versus non-equilibrium vacancies and backstress. In Defect and Diffusion Forum (Vol. 309, pp. 135-142). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DDF.309-310.135
  • Tang, W., Picraux, S. T., Gusak, A. M., Tu, K. N., & Dayeh, S. A. (2014). Dynamical imaging of nickel disilicide nucleation and step flow propagation in defect-engineered Si nanowire. ECS Transactions, 64(8), 101. https://iopscience.iop.org/article/10.1149/06408.0101ecst/meta
  • Gusak, A. M., Podolyan, O. M., & Tu, K. N. (2009). Segregation modelling in two-phase alloys under electric current. Metallofizika i Noveishie Tekhnologii, 31(4), 487-493. https://scholar.nctu.edu.tw/zh/publications/segregation-modelling-in-two-phase-alloys-under-electric-current

University of Grenoble (до об’єднання – Institut Polytechnique de Grenoble ) FRANCE
  • Hodaj, F., Gusak, A. M., & Desre, P. J. (1998). Effect of sharp concentration gradients on the nucleation of intermetallics in disordered solids: influence of the embryo shape. Philosophical Magazine A, 77(6), 1471-1479. https://doi.org/10.1080/01418619808214264
  • Gusak, A. M., Hodaj, F., & Bogatyrev, A. O. (2001). Kinetics of nucleation in the concentration gradient. Journal of physics: Condensed matter, 13(12), 2767. https://iopscience.iop.org/article/10.1088/0953-8984/13/12/302/meta
  • Hodaj, F., & Gusak, A. M. (2004). Suppression of intermediate phase nucleation in binary couples with metastable solubility. Acta materialia, 52(14), 4305-4315. https://doi.org/10.1016/j.actamat.2004.05.047
  • Gusak, A. M., & Hodaj, F. (2005). Nucleation in a Concentration Gradient. Nucleation Theory and Applications. edited by J. W. P. Schmelzer Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA ISBN: 3-527-40469-4, Chapter 10
  • Gusak, A., Hodaj, F., & Liashenko, O. (2015). Criteria of kinetic suppression of lateral growth of intermediate phases. Philosophical Magazine Letters, 95(2), 110-121. https://doi.org/10.1080/09500839.2015.1020350
  • Gusak, A. M., Hodaj, F., & Zaporozhets, T. V. (2011). Thermodynamics of void nucleation in nanoparticles. Philosophical magazine letters, 91(12), 741-750. https://doi.org/10.1080/09500839.2011.616180
  • Gusak, A. M., Lyashenko, O. Y., & Hodaj, F. (2019). The Competition of Intermediate Phases in the Diffusion Zone. Inorganic Materials: Applied Research, 10(3), 517-524. https://link.springer.com/article/10.1134/S2075113319030109
  • Hodaj, F., Gusak, A. M., Kovalchuk, A. O., & Desre, P. J. (1997). Nucleation modes in sharp concentration gradients. MRS Online Proceedings Library (OPL), 481. https://doi.org/10.1557/PROC-481-113
  • Shirinyan, A. S., Gusak, A., & Desre, P. J. (2000). Nucleation and growth in nanometric volumes. In Journal of Metastable and Nanocrystalline Materials (Vol. 7, pp. 17-40). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/JMNM.7.17
  • Gusak, A., & Desre, P. J. (2001). Interdiffusion-independent modes in multicomponent systems. In Defect and Diffusion Forum (Vol. 194, pp. 201-208). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DDF.194-199.201
  • Desre, P. J., & Gusak, A. (2001). Relaxation of thermal concentration fluctuations in ternary liquids. Philosophical magazine A, 81(10), 2503-2514. https://doi.org/10.1080/01418610108217160
  • Hodaj, F., Liashenko, O., & Gusak, A. M. (2014). Cu3Sn suppression criterion for solid copper/molten tin reaction. Philosophical magazine letters, 94(4), 217-224.

Department of Materials Science and Engineering, Beijing Institute of Technology (China)
  • Liu, Y., Gusak, A., Jing, S., & Tu, K.N. (2022) Fast prediction of electromigration lifetime with modified mean-time- to-failure equation. Materials Letters, V. 325, P. 132880. https://doi.org/10.1016/j.matlet.2022.132880
  • Liu, Y., Pu, L., Gusak, A., Zhao, X., Tan, C., & Tu, K. N. (2020). Ultra-thin intermetallic compound formation in microbump technology by the control of a low Zn concentration in solder. Materialia, 12, 100791. https://doi.org/10.1016/j.mtla.2020.100791

Department of Materials Science and Engineering, National Chiao Tung University (Taiwan)
  • Shie, K. C., Tran, D. P., Gusak, A. M., Tu, K. N., Liu, H. C., & Chen, C. (2022) Modeling of Cu-Cu Thermal Compression Bonding.2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), pp. 2201- 2205. https://doi.org/10.1109/ECTC51906.2022.00347
  • Liu, H.C., Yang, S.C., Ong, J.J., Tran, D.P., Gusak, A.M., Tu, K.N., & Chen, C. (2022) Evolution of interfacial voids in Cu-to-Cu joints. Materials Characterization.V. 190, P. 112085. https://doi.org/10.1016/j.matchar.2022.112085
  • Gusak, A. M., Tu, K. N., & Chen, C. (2020). Extremely rapid grain growth in scallop-type Cu6Sn5 during solid–liquid interdiffusion reactions in micro-bump solder joints. Scripta Materialia, 179, 45-48. https://doi.org/10.1016/j.scriptamat.2020.01.005
  • Gusak, A. M., Chen, C., & Tu, K. N. (2016). Flux-driven cellular precipitation in open system to form porous Cu3Sn. Philosophical Magazine, 96(13), 1318-1331. https://doi.org/10.1080/14786435.2016.1162913

School of Materials Engineering, Nanyang Technological University (Singapore)

  • Vairagar, A. V., Mhaisalkar, S. G., Krishnamoorthy, A., Tu, K. N., Gusak, A. M., Meyer, M. A., & Zschech, E. (2004). In situ observation of electromigration-induced void migration in dual-damascene Cu interconnect structures. Applied physics letters, 85(13), 2502-2504. https://doi.org/10.1063/1.1795978
  • Vairagar, A. V., Mhaisalkar, S. G., Meyer, M. A., Zschech, E., Krishnamoorthy, A., Tu, K. N., & Gusak, A. M. (2005). Direct evidence of electromigration failure mechanism in dual-damascene Cu interconnect tree structures. Applied physics letters, 87(8), 081909, https://doi.org/10.1063/1.2033136
  • Shao, W., Mhaisalkar, S. G., Sritharan, T., Vairagar, A. V., Engelmann, H. J., Aubel, O., … & Tu, K. N. (2007). Direct evidence of Cu/cap/liner edge being the dominant electromigration path in dual damascene Cu interconnects. Applied physics letters, 90(5), 052106. https://doi.org/10.1063/1.2437689
  • Gan, Z. H., Shao, W., Mhaisalkar, S. G., Chen, Z., Li, H., Tu, K. N., & Gusak, A. M. (2006). Reservoir effect and the role of low current density regions on electromigration lifetimes in copper interconnects. Journal of materials research, 21(9), 2241-2245. https://link.springer.com/article/10.1557/jmr.2006.0270
  • Gan, Z., Gusak, A. M., Shao, W., Chen, Z., Mhaisalkar, S. G., Zaporozhets, T., & Tu, K. N. (2007). Analytical modeling of reservoir effect on electromigration in Cu interconnects. Journal of materials research, 22(1), 152-156. https://link.springer.com/article/10.1557/jmr.2007.0001
  • Gan, Z. H., Shao, W., Yan, M. Y., Vairagar, A. V., Zaporozhets, T., Meyer, M. A., … & Mhaisalkar, S. G. (2006, February). Understanding the Impact of Surface Engineering, Structure, and Design on Electromigration through Monte Carlo Simulation and In‐Situ SEM Studies. In AIP Conference Proceedings (Vol. 817, No. 1, pp. 34-42). American Institute of Physics. https://doi.org/10.1063/1.2173529
  • Vairagar, A. V., Mhaisalkar, S. G., Krishnamoorthy, A., Tu, K. N., Gusak, A. M., Zaporozhets, T., … & Zschech, E. (2004, December). Study of Electromigration Induced Void Nucleation, Growth, and Movement in Cu Interconnects. In AIP Conference Proceedings (Vol. 741, No. 1, pp. 135-147). American Institute of Physics. https://doi.org/10.1063/1.1845843
  • Rui, X., Tang, Y., Malyi, O. I., Gusak, A., Zhang, Y., Niu, Z., … & Yan, Q. (2016). Ambient dissolution–recrystallization towards large-scale preparation of V2O5 nanobelts for high-energy battery applications. Nano Energy, 22, 583-593. https://doi.org/10.1016/j.nanoen.2016.03.001

Institute of Material Physics, University of Muenster, Germany
  • Gusak, A. M., Hodaj, F., & Schmitz, G. (2011). Flux-driven nucleation at interfaces during reactive diffusion. Philosophical Magazine Letters, 91(9), 610-620. https://doi.org/10.1080/09500839.2011.600257
  • Pasichnyy, M. O., Schmitz, G., Gusak, A. M., & Vovk, V. (2005). Application of the critical gradient concept to the nucleation of the first-product phase in Co∕ Al thin films. Physical Review B, 72(1), 014118.. https://doi.org/10.1103/PhysRevB.72.014118
  • Gusak, A., Schmitz, G., & Storozhuk, N. (2012). Flux Driven Nucleation at Interfaces During Reactive Diffusion–New Solution of an old Problem. In Defect and Diffusion Forum (Vol. 323, pp. 55-60). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DDF.323-325.55
  • Eich, S. M., Kasprzak, M., Gusak, A., & Schmitz, G. (2012). On the mechanism of diffusion-induced recrystallization: Comparison between experiment and molecular dynamics simulations. Acta materialia, 60(8), 3469-3479. https://doi.org/10.1016/j.actamat.2012.03.009
  • Sobchenko, I. V., Schmitz, G., Gusak, A. M., & Baither, D. (2007). LATERAL GRAIN GROWTH DURING NANOFILM DEPOSITION. Вестник Черкасского национального университета. Серия: Физико-математические науки, (117), 51-57.

Physics of Condensed Matter, University of Mons-Hainaut (Belgium)

AGH University of Science and Technology (Cracow)
  • Yaroslav Korol, Andriy Gusak, Marek Danielewski, Marta Gajewska. (2022) Formation and Ripening of Nanobelts/Nanofibers under Stirring of aqueous Solution – alternative models.Diffusion Fundamentals, 34 3, pp 1-16. https://diffusion.uni- leipzig.de/pdf/volume34/diff_fund_34(2022)03.pdf
  • Danielewski, M., Wierzba, B., Gusak, A., Pawełkiewicz, M., & Janczak-Rusch, J. (2011). Chemical interdiffusion in binary systems; interface barriers and phase competition. Journal of Applied Physics, 110(12), 123705. https://doi.org/10.1063/1.3667293
  • Gusak, A., Danielewski, M., Korbel, A., Bochniak, M., & Storozhuk, N. (2014). Elementary model of severe plastic deformation by KoBo process. Journal of Applied Physics, 115(3), 034905. https://doi.org/10.1063/1.4861870
  • Danielewski, M., Gusak, A., Bożek, B., & Zajusz, M. (2016). Model of diffusive interaction between two-phase alloys with explicit fine-tuning of the morphology evolution. Acta Materialia, 108, 68-84. https://doi.org/10.1016/j.actamat.2016.02.018
  • Gusak, A., Wierzba, B., & Danielewski, M. (2014). Competition between Kirkendall shift and backstress in interdiffusion revisited–simple analytic model. Philosophical Magazine, 94(10), 1153-1165. https://doi.org/10.1080/14786435.2013.878053
  • Gusak, A., Wierzba, B., & Danielewski, M. (2015). Electromigration revisited: competition between Kirkendall shift and backstress in pure metals and two-phase alloys. Philosophical Magazine, 95(10), 1093-1104. https://doi.org/10.1080/14786435.2015.1020352
  • Gusak, A., Leszczynski, H., Danielewski, M., & Klochay, V. (2015). Zero stability of the two-phase systems and random walk in the composition space. Вісник Черкаського університету. Серія: Фізико-математичні науки, (16), 3-9.
  • Gusak, A., Leszczynski, H., Danielewski, M., & Klochay, V. (2015). Zero stability of the two-phase systems and random walk in the composition space. Вісник Черкаського університету. Серія: Фізико-математичні науки, (16), 3-9.

Jagiellonian University (Cracow)
  • V.M. Bezpalchuk, R. Kozubski, A.M. Gusak . Simulation of the tracer diffusion, bulk ordering, and surface reordering in f.c.c. structures by kinetic mean-field method // Успехи физики металлов. — 2017. — Т. 18, № 3. — С. 205-233. https://doi.org/10.15407/ufm.18.03.205
  • Bezpalchuk, V., Abdank-Kozubski, R., Pasichnyy, M., & Gusak, A. (2018). Tracer diffusion and ordering in FCC structures-stochastic kinetic Mean-Field Method vs. Kinetic Monte Carlo. In Defect and Diffusion Forum (Vol. 383, pp. 59-65). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DDF.383.59
  • Gusak, A., Abdank-Kozubski, R., & Tyshchenko, D. (2015). Grain growth in open systems. In Diffusion Foundations (Vol. 5, pp. 229-244). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DF.5.229
  • Bezpalchuk, V., Gusak, A., & Kozubski, R. (2016). Correlations between phase formation morphology and sequence with the temperature profile of exothermic solid-state reactions. Вісник Черкаського університету. Серія Фізико-математичні науки, (1), 3-11.

Technical University of Eindhoven (The Netherlands)
  • Van Dal, M. J. H., Gusak, A. M., Cserháti, C., Kodentsov, A. A., & Van Loo, F. J. J. (2001). Microstructural stability of the Kirkendall plane in solid-state diffusion. Physical review letters, 86(15), 3352. https://doi.org/10.1103/PhysRevLett.86.3352
  • Van Dal, M. J. H., Gusak, A. M., Cserháti, C., Kodentsov, A. A., & Van Loo, F. J. J. (2002). Spatio-temporal instabilities of the Kirkendall marker planes during interdiffusion in β’-AuZn. Philosophical magazine A, 82(5), 943-954. https://doi.org/10.1080/01418610208240011
  • Kodentsov, A. A., Paul, A., Van Dal, M. J. H., Cserháti, C., Gusak, A. M., & Van Loo, F. J. J. (2008). On the spatial stability and bifurcation of the Kirkendall plane during solid-state interdiffusion. Critical reviews in solid state and materials sciences, 33(3-4), 210-233. https://doi.org/10.1080/10408430802462958
  • Kodentsov, A. A., Van Dal, M. J. H., Cserháti, C., Gusak, A., & van Loo, F. J. J. (2001). Patterning in reactive diffusion. In Defect and Diffusion Forum (Vol. 194, pp. 1491-1502). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DDF.194-199.1491
  • Van Dal, M. J. H., Gusak, A., Cserháti, C., Kodentsov, A. A., & Van Loo, F. J. J. (2001). Instabilities of Kirkendall planes. In Defect and Diffusion Forum (Vol. 194, pp. 195-200). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DDF.194-199.195

Department of Solid State Physics. University of Debrecen (Hungary)
  • Erdélyi, Z., Pasichnyy, M., Bezpalchuk, V., Tomán, J. J., Gajdics, B., & Gusak, A. M. (2016). Stochastic kinetic mean field model. Computer Physics Communications, 204, 31-37. https://doi.org/10.1016/j.cpc.2016.03.003
  • Zaporozhets, T. V., Taranovskyy, A., Jáger, G., Gusak, A. M., Erdélyi, Z., & Tomán, J. J. (2020). The effect of introducing stochasticity to kinetic mean-field calculations: Comparison with lattice kinetic Monte Carlo in case of regular solid solutions. Computational Materials Science, 171, 109251. https://doi.org/10.10/j.commatsci.2019.109251
  • Morozovych, V. V., Honda, A. R., Lyashenko, Y. O., Korol, Y. D., Liashenko, O. Y., Cserhati, С., & Gusak, A. M. (2018). Influence of copper pretreatment on the phase and pore formations in the solid phase reactions of copper with tin. Металлофизика и новейшие технологии, 40(12), 1649-1673. http://eprints.cdu.edu.ua/id/eprint/3706

University of Macau

Gusak, A., Huriev, Y., Malyi, O. I., & Tang, Y. (2020). Elementary models of the “flux driven anti-ripening” during nanobelt growth. Physical Chemistry Chemical Physics, 22(17), 9740-9748. https://doi.org/10.1039/C9CP06337D

EMPA (Dubendorf, Zurich, Switzerland)
  • Gusak, A., Zaporozhets, T., & Janczak-Rusch, J. (2017). Kinetic pinning versus capillary pinning of voids at the moving interface during reactive diffusion. Philosophical Magazine Letters, 97(1), 1-10. https://doi.org/10.1080/09500839.2016.1262559
  • Pasichnyy, M., Janczak-Rusch, J., Jeurgens, L. P., Liashenko, O., & Gusak, A. (2015). Application of the Critical Gradient Concept to First Phase Formation in Cu/Sn Nano-Multilayered Systems. In Euromat (pp. 20-24). http://eprints.cdu.edu.ua/id/eprint/2158

University of Rostock
  • Gusak, A., Huriev, Y., & Schmelzer, J. W. (2020). Anisotropic Nucleation, Growth and Ripening under Stirring—A Phenomenological Model. Entropy, 22(11), 1254. https://doi.org/10.3390/e22111254
  • Gusak, A. M., Zaporozhets, T. V., Lyashenko, Y. O., Kornienko, S. V., Pasichnyy, M. O., & Shirinyan, A. S. (2010). Diffusion-controlled solid state reactions: in alloys, thin films and nanosystems. John Wiley & Sons. Ed. By J.W.P.Schmelzer